Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition

Identifieur interne : 00A699 ( Main/Repository ); précédent : 00A698; suivant : 00A700

High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition

Auteurs : RBID : Pascal:04-0132740

Descripteurs français

English descriptors

Abstract

We report on the structural properties and optical and electrical characteristics of InN epitaxial layers grown on highly resistive GaN templates using migration enhanced metalorganic chemical vapor deposition (MEMOCVD). The material quality of InN improved significantly for the layer thickness larger than 150 nm. The highest extracted value of the room temperature electron mobility was close to 850 cm2/Vs for samples with electron carrier concentration of ∼4×1018 cm-3. The measured dependence of the electron mobility on electron concentration is interpreted using the model accounting for ionized impurity scattering, polar optical scattering, and compensation. The MEMOCVD-grown material exhibited stronger photoluminescence (PL) compared to InN deposited using conventional metalorganic chemical vapor deposition. Room temperature PL spectra were similar to InN grown using molecular beam epitaxy (MBE) with peak emission at 0.8 eV. The obtained results demonstrate the potential of the MEMOCVD technique for deposition of high quality InN epitaxial layers at reduced temperatures comparable to those used in MBE growth. © 2004 American Institute of Physics.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:04-0132740

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition</title>
<author>
<name sortKey="Fareed, R S Qhalid" uniqKey="Fareed R">R. S. Qhalid Fareed</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="03">
<s1>Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Department of Electrical Engineering, University of South Carolina, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jain, R" uniqKey="Jain R">R. Jain</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Gaska, R" uniqKey="Gaska R">R. Gaska</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Shur, M S" uniqKey="Shur M">M. S. Shur</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Wu, J" uniqKey="Wu J">J. Wu</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkley, California 94720</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Walukiewicz, W" uniqKey="Walukiewicz W">W. Walukiewicz</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkley, California 94720</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Khan, M Asif" uniqKey="Khan M">M. Asif Khan</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Sud</region>
</placeName>
<wicri:cityArea>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">04-0132740</idno>
<date when="2004-03-15">2004-03-15</date>
<idno type="stanalyst">PASCAL 04-0132740 AIP</idno>
<idno type="RBID">Pascal:04-0132740</idno>
<idno type="wicri:Area/Main/Corpus">00BD11</idno>
<idno type="wicri:Area/Main/Repository">00A699</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0003-6951</idno>
<title level="j" type="abbreviated">Appl. phys. lett.</title>
<title level="j" type="main">Applied physics letters</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Electron density</term>
<term>Electron mobility</term>
<term>Experimental study</term>
<term>Gallium compounds</term>
<term>III-V semiconductors</term>
<term>Impurity scattering</term>
<term>Indium compounds</term>
<term>Light scattering</term>
<term>MOCVD</term>
<term>Molecular beam epitaxy</term>
<term>Photoluminescence</term>
<term>Semiconductor epitaxial layers</term>
<term>Semiconductor growth</term>
<term>Semiconductor heterojunctions</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>7340K</term>
<term>7866F</term>
<term>7361E</term>
<term>7855C</term>
<term>7220F</term>
<term>8115H</term>
<term>8115G</term>
<term>Etude expérimentale</term>
<term>Gallium composé</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Hétérojonction semiconducteur</term>
<term>Méthode MOCVD</term>
<term>Epitaxie jet moléculaire</term>
<term>Couche épitaxique semiconductrice</term>
<term>Croissance semiconducteur</term>
<term>Densité électron</term>
<term>Diffusion lumière</term>
<term>Diffusion impureté</term>
<term>Mobilité électron</term>
<term>Photoluminescence</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the structural properties and optical and electrical characteristics of InN epitaxial layers grown on highly resistive GaN templates using migration enhanced metalorganic chemical vapor deposition (MEMOCVD). The material quality of InN improved significantly for the layer thickness larger than 150 nm. The highest extracted value of the room temperature electron mobility was close to 850 cm
<sup>2</sup>
/Vs for samples with electron carrier concentration of ∼4×10
<sup>18</sup>
cm
<sup>-3</sup>
. The measured dependence of the electron mobility on electron concentration is interpreted using the model accounting for ionized impurity scattering, polar optical scattering, and compensation. The MEMOCVD-grown material exhibited stronger photoluminescence (PL) compared to InN deposited using conventional metalorganic chemical vapor deposition. Room temperature PL spectra were similar to InN grown using molecular beam epitaxy (MBE) with peak emission at 0.8 eV. The obtained results demonstrate the potential of the MEMOCVD technique for deposition of high quality InN epitaxial layers at reduced temperatures comparable to those used in MBE growth. © 2004 American Institute of Physics.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0003-6951</s0>
</fA01>
<fA02 i1="01">
<s0>APPLAB</s0>
</fA02>
<fA03 i2="1">
<s0>Appl. phys. lett.</s0>
</fA03>
<fA05>
<s2>84</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>FAREED (R. S. Qhalid)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JAIN (R.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>GASKA (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>SHUR (M. S.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WU (J.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>WALUKIEWICZ (W.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>KHAN (M. Asif)</s1>
</fA11>
<fA14 i1="01">
<s1>Sensor Electronic Technology, Inc., 1195 Atlas Road, Columbia, South Carolina 29209</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Division of Materials Sciences, Lawrence Berkeley National Laboratory, Berkley, California 94720</s1>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Department of Electrical Engineering, University of South Carolina, Columbia, South Carolina 29208</s1>
</fA14>
<fA20>
<s1>1892-1894</s1>
</fA20>
<fA21>
<s1>2004-03-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>10020</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2004 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>04-0132740</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Applied physics letters</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the structural properties and optical and electrical characteristics of InN epitaxial layers grown on highly resistive GaN templates using migration enhanced metalorganic chemical vapor deposition (MEMOCVD). The material quality of InN improved significantly for the layer thickness larger than 150 nm. The highest extracted value of the room temperature electron mobility was close to 850 cm
<sup>2</sup>
/Vs for samples with electron carrier concentration of ∼4×10
<sup>18</sup>
cm
<sup>-3</sup>
. The measured dependence of the electron mobility on electron concentration is interpreted using the model accounting for ionized impurity scattering, polar optical scattering, and compensation. The MEMOCVD-grown material exhibited stronger photoluminescence (PL) compared to InN deposited using conventional metalorganic chemical vapor deposition. Room temperature PL spectra were similar to InN grown using molecular beam epitaxy (MBE) with peak emission at 0.8 eV. The obtained results demonstrate the potential of the MEMOCVD technique for deposition of high quality InN epitaxial layers at reduced temperatures comparable to those used in MBE growth. © 2004 American Institute of Physics.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C40K</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H66F</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B70H55C</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70B20F</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="07" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>7340K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7866F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>7855C</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7220F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>8115G</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium composé</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium compounds</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Hétérojonction semiconducteur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Semiconductor heterojunctions</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>MOCVD</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Densité électron</s0>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Electron density</s0>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Diffusion lumière</s0>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Light scattering</s0>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Diffusion impureté</s0>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Impurity scattering</s0>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Mobilité électron</s0>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Electron mobility</s0>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>Photoluminescence</s0>
</fC03>
<fC03 i1="22" i2="3" l="ENG">
<s0>Photoluminescence</s0>
</fC03>
<fN21>
<s1>082</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0411M000123</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00A699 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00A699 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:04-0132740
   |texte=   High quality InN/GaN heterostructures grown by migration enhanced metalorganic chemical vapor deposition
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024